martes, 2 de junio de 2009

PARTICULAS DEL ATOMO











El núcleo atómico


El núcleo del átomo se encuentra formado por nucleones, los cuales pueden ser de dos clases:
Protones: Partícula de carga eléctrica positiva igual a una carga elemental, y 1,67262 × 10–27 kg y una masa 1837 veces mayor que la del electrón
Neutrones: Partículas carentes de carga eléctrica y una masa un poco mayor que la del protón (1,67493 × 10–27 kg)
El núcleo más sencillo es el del hidrógeno, formado únicamente por un protón. El núcleo del siguiente elemento en la tabla periódica, el helio, se encuentra formado por dos protones y dos neutrones. La cantidad de protones contenidas en el núcleo del átomo se conoce como número atómico, el cual se representa por la letra Z y se escribe en la parte inferior izquierda del símbolo químico. Es el que distingue a un elemento químico de otro. Según lo descrito anteriormente, el número atómico del hidrógeno es 1 (1H), y el del helio, 2 (2He).
La cantidad total de nucleones que contiene un átomo se conoce como número másico, representado por la letra A y escrito en la parte superior izquierda del símbolo químico. Para los ejemplos dados anteriormente, el número másico del hidrógeno es 1(1H), y el del helio, 4(4He).
Existen también átomos que tienen el mismo número atómico, pero diferente número másico, los cuales se conocen como isótopos. Por ejemplo, existen tres isótopos naturales del hidrógeno, el protio (1H), el deuterio (2H) y el tritio (3H). Todos poseen las mismas propiedades químicas del hidrógeno, y pueden ser diferenciados únicamente por ciertas propiedades físicas.
Otros términos menos utilizados relacionados con la estructura nuclear son los isótonos, que son átomos con el mismo número de neutrones. Los isóbaros son átomos que tienen el mismo número másico.
Debido a que los protones tienen cargas positivas se deberían repeler entre sí, sin embargo, el núcleo del átomo mantiene su cohesión debido a la existencia de otra fuerza de mayor magnitud, aunque de menor alcance conocida como la interacción nuclear fuerte. Es la porción más pequeña de la materia.

El primero en utilizar este término fue Demócrito, porque creía que todos los elementos deberían estar formados por pequeñas partículas que fueran INDIVISIBLES. Átomo, en griego, significa INDIVISIBLE.
Hoy día sabemos, que los átomos no son, como creía Demócrito, indivisibles.
De hecho están formados por partículas.
Estas partículas son:









ELECTRÓN
Es una partícula elemental con carga eléctrica negativa igual a 1,602 x 10-19 coulomb y masa igual a 9,1083 x 10-28 g, que se encuentra formando parte de los átomos de todos los elementos.

NEUTRÓN
Es una partícula elemental eléctricamente neutra y masa ligeramente superior a la del protón, que se encuentra formando parte de los átomos de todos los elementos.













PLASMA




Una lámpara de plasma.
En física y química, se denomina plasma a un gas constituido por partículas cargadas (iones) libres y cuya dinámica presenta efectos colectivos dominados por las interacciones electromagnéticas de largo alcance entre las mismas. Con frecuencia se habla del plasma como un estado de agregación de la materia con características propias, diferenciándolo de este modo del estado gaseoso, en el que no existen efectos colectivos importantes.


Parámetros de un plasma




Puesto que existen plasmas en contextos muy diferentes y con características muy diversas, la primera tarea de la física del plasma es definir apropiadamente los parámetros que deciden el comportamiento de un plasma. El conocimiento de estos parámetros permite al investigador escoger la descripción más apropiada para su sistema. Los principales parámetros son los siguientes:

Neutralidad y especies presentes


Generalmente un plasma está formado por igual número de cargas positivas y negativas, lo que anula la carga total del sistema. En tal caso se habla de un plasma neutro o casi-neutro. También existen plasmas no neutros o inestables, como el flujo de electrones dentro de un acelerador de partículas, pero requieren algún tipo de confinamiento externo para vencer las fuerzas de repulsión electrostática.
Los plasmas más comunes son los formados por electrones e iones. En general puede haber varias especies de iones dentro del plasma, como moléculas ionizadas positivas (cationes) y otras que han capturado un electrón y aportan una carga negativa (aniones).

Longitudes


La longitud de Debye o de apantallamiento electromagnético. Tambien la longitud de una onda plasmatica depende del contenido cóncavo de su recipiente, el cual influye porque su paralelismo con respecto del eje x sobre la tierra afecta la longitud de dicha onda de espectro electromagnetico.

La frecuencia de plasma


Así como la longitud de Debye proporciona una medida de las longitudes típicas en un plasma, la frecuencia de este, de plasma (ωp) describe sus tiempos característicos. Supóngase que en un plasma en equilibrio y sin densidades de carga se introduce un pequeño desplazamiento de todos los electrones en una dirección. Éstos sentirán la atracción de los iones en la dirección opuesta, se moverán hacia ella y comenzarán a oscilar en torno a la posición original de equilibrio. La frecuencia de tal oscilación es lo que se denomina frecuencia de plasma. La frecuencia de plasma de los electrones es:

donde me es la masa del electrón y e su carga.

Temperatura: velocidad térmica




Los rayos y relámpagos son un plasma que alcanza una temperatura de 27.000 °C
Por lo general las partículas de una determinada especie localizadas en un punto dado no tienen igual velocidad: presentan por el contrario una distribución que en el equilibrio térmico es descrita por la distribución de Maxwell-Boltzmann. A mayor temperatura, mayor será la dispersión de velocidades (más ancha será la curva que la representa).
Una medida de tal dispersión es la velocidad cuadrática media que, en el equilibrio, se denomina también velocidad térmica. Es frecuente, aunque formalmente incorrecto, hablar también de velocidad térmica y de temperatura en plasmas lejos del equilibrio termodinámico. En tal caso, se menciona la temperatura que correspondería a una velocidad cuadrática media determinada. La velocidad térmica de los electrones es:


El parámetro de plasma


El parámetro de plasma (Γ) indica el número medio de partículas contenidas en una esfera cuyo radio es la longitud de Debye (esfera de Debye). La definición de plasma, según la cual la interacción electromagnética de una partícula con la multitud de partículas distantes domina sobre la interacción con los pocos vecinos próximos, puede escribirse en términos del parámetro de plasma como . Esto es: hay un gran número de partículas contenidas en una esfera de Debye. Es común referirse a esta desigualdad como "condición de plasma".
Algunos autores adoptan una definición inversa del parámetro de plasma (g = 1 / Γ), con lo que la condición de plasma resulta ser .
El parámetro de plasma de los electrones es


Modelos teóricos


Tras conocer los valores de los parámetros descritos en la sección anterior, el estudioso de los plasmas deberá escoger el modelo más apropiado para el fenómeno que le ocupe. Las diferencias entre diferentes modelos residen en el detalle con el que describen un sistema, de modo que se puede establecer así jerarquía en la que descripciones de nivel superior se deducen de las inferiores tras asumir que algunas de las variables se comportan de forma prescrita. Estas asunciones o aproximaciones razonables no son estrictamente ciertas pero permiten entender fenómenos que serían difíciles de tratar en modelos más detallados.
Por supuesto, no todas las especies han de ser descritas de una misma forma: por ejemplo, debido a que los iones son mucho más pesados que los electrones, es frecuente analizar la dinámica de los últimos tomando a los iones como inmóviles o estudiar los movimientos de los iones suponiendo que los electrones reaccionan mucho más rápido y por tanto están siempre en equilibrio termodinámico.
Puesto que las fuerzas electromagnéticas de largo alcance son dominantes, todo modelo de plasma estará acoplado a las ecuaciones de Maxwell, que determinan los campos electromagnéticos a partir de las cargas y corrientes en el sistema.
Los modelos fundamentales más usados en la física del plasma, listados en orden decreciente de detalle, es decir de microscópicos a macroscópicos, son los modelos discretos, los modelos cinéticos continuos y los modelos de fluidos o hidrodinámicos.

Modelos discretos


El máximo detalle en el modelado de un plasma consiste en describir la dinámica de cada una de sus partículas según la segunda ley de Newton. Para hacer esto con total exactitud en un sistema de N partículas habría que calcular del orden de N2 interacciones. En la gran mayoría de los casos, esto excede la capacidad de cálculo de los mejores ordenadores actuales.
Sin embargo, gracias al carácter colectivo de los plasmas, reflejado en la condición de plasma, es posible una simplificación que hace mucho más manejable el cálculo. Esta simplificación es la que adoptan los llamados modelos numéricos Particle-In-Cell (PIC; Partícula-En-Celda): el espacio del sistema se divide en un número no muy grande de pequeñas celdas. En cada instante de la evolución se cuenta el número de partículas y la velocidad media en cada celda, con lo que se obtienen densidades de carga y de corriente que, insertadas en las ecuaciones de Maxwell permiten calcular los campos electromagnéticos. Tras ello, se calcula la fuerza ejercida por estos campos sobre cada partícula y se actualiza su posición, repitiendo este proceso tantas veces como sea oportuno.
Los modelos PIC gozan de gran popularidad en el estudio de plasmas a altas temperaturas, en los que la velocidad térmica es comparable al resto de velocidades características del sistema.


Ejemplos de plasmas































































































PROTÓN
Es una partícula elemental con carga eléctrica positiva igual a 1,602 x 10-19 coulomb y cuya masa es 1837 veces mayor que la del electrón , que se encuentra formando parte de los átomos de todos los elementos.

EVOLUCION DEL MODELO ATOMICO